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The all-valence electron energy band structure has been calculated for /~ polyglycine in the 
parallel-chain pleated sheet conformation. The anisotropy of the charge carrier effective masses and 
mobilities have been investigated, The direction of the polypeptide backbone is found theoretically to 
be more favourable for electrical conduction than that of the hydrogen bonds. 
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Introduction 

More than thirty years elapsed since Szent-Gy~rgyi and Laki directed 
attention to the possibility and significance of semiconductive-type charge and 
excitation energy transfer in biological macromolecules [-1]. Experimental 
investigations of a considerable number confirmed since then the existence of 
electronic delocalization in polynucleotides and polypeptides, but the nature of 
the mechanism of conduction in these systems still constitutes a question to be 
solved from the theoretical point of view. This is understandable, since in 
consequence of the extremely complicated geometrical structure of these macro- 
molecules and due to the presence of numerous different interactions, the 
quantum mechanical calculation of the physical properties (carrier mobility, 
activation energy of conductivity, etc.), which could help in answering the above 
question, can be carried out only gradually by using more and more refined 
models and calculation methods. 

In a preceding paper [-2] (referred to as Part I of this series) we gave a short 
review of the calculations performed up till now on the electronic structure of 
periodic protein models. The basic idea of these theoretical investigations was to 
build up the polypeptide chain by the regular translation of the peptide unit 
either along the hydrogen bridges or perpendicular to them and to treat the 
resulting one-dimensional crystal by solid state physical methods. In Part I we 
showed that the array of molecules obtained by simultaneous translation of the 
peptide unit along the above mentioned two directions (called polyformamide 
network) can be more adequately treated if we take into account interactions 
along the hydrogen bonds and the main polypeptide chain at the same time. 
Another model calculation showed [3] that in polypeptides of/~ conformation 
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Fig. 1. The structure of/~ polyglycine in the parallel-chain pleated sheet configuration. The elementary 
translation vectors are indicated by a and b along the direction of the hydrogen bonds and along the 

polypeptide backbone, respectively. The atoms of the asymmetric unit are numbered 

one has to consider also the second neighbours' interactions which may have a 
very strong influence on the positions of the bands as well as on their widths. 

In polypeptides of/3 structure, from which polyglycine is the simplest one 
(Fig. 1), there is no planar symmetry which would allow the separation of the 
and rc electron systems. Therefore the correct description of their electronic prop- 
erties requires at least an all-valence electron treatment. Previous investigations 
showed that among the SCF LCAO all-valence electron crystal orbital schemes 
the MINDO/2 parametrization yields the most realistic band structures [2-4], 
so this method is applied in this work for polyglycine. 

The computation of the energy bands forms only the first step in 
determining the characteristic quantities of the electrical conduction. The second 
and, if possible, even more intricated task is to calculate the interactions between 
the excess electrons or holes and the lattice vibrations. The direct evaluation of 
the electron-phonon scattering matrix elements is out of the scope of this paper. 
Instead we attempt to get an overall picture of the charge carrier motion in 
these systems by estimating some dynamical properties like the effective mass of 
the charge carriers at the corresponding band edges, the anisotropy and the order 
of magnitude of the mobility along the different crystal axes using the constant 
relaxation time approximation. 

Method of Calculation 

It is a priori postulated in this crystal orbital study that the electronic structure 
of the macromolecule can be best described in terms of Bloch-type delocalized 
orbitals extending over the whole molecular aggregate. The use of Bloch's 
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theorem and the LCAO approximation permits one to write down the one- 
electron crystal orbitals of a two-dimensional system in the form 

Na Nb A 

tP,(k,r)=(NaNb) -1/2 ~ ~ ~ exp(ikRhj)C~n(k)dp~(r-Rhj), (1) 
h = l  j = l  ~=1 

where n is the band index, k = (k., kb) stands for the crystal momentum vector, 
N. and N b give the number of elementary cells along the crystal axes with basis 
vectors ,  and b, respetively, c~(r - Rhj) is the ath atomic orbital centered at cell 
with position vector Rhj = ha +jb, and finally A gives the total number of atomic 
orbitals in the elementary cell. The expansion coefficients of the linear combi- 
nation C~.(k) and the corresponding one-electron energy levels e.(k) can be 
determined within the framework of the zero differential overlap approximation 
by solving the complex matrix eigenvalue equation 

F(k) C~(k) = e,(k) C,(k) (2) 

for the energetically inequivalent, representative points of the first Brillouin 
zone [5]. The Fock matrix F(k) in Eq. (2) has the structure 

F(k) = ~ exp(ikRq) F(q), (3) 
q 

where q stands for the cell at position R~ = qaa + qb b, and F(q) contains the 
interactions between the reference cell (0, 0) and cell q. 

The actual form of the matrix elements Fuv(q ) depends on the integral 
approximations used in the calculations. For the MINDO/2 crystal orbital 
method they are explicitly given in Ref. [2]. The atomic coordinates used in the 
computation of the interatomic integrals were taken from Ref. [6] and are listed 
for the asymmetric unit of the crystal in Table 1. The second part of the elementary 
cell can be obtained by the transformation ( x , y , z ) ~ ( - x , y + l / 2 b ,  z). The 
translational units along the hydrogen bonds and the backbone are a =4.85 
and b = 6.50 A, respectively. The number of the different interacting cells in Eq. (3) 
is obviously limited for practical reasons. It is very important, however, to con- 
sider all those neighbours for which the various two-center integrals are 
comparable in magnitude with those for the immediately neighbouring cells. 
Having in sight the results of model calculations [3] we allowed in this study for 
the following values of q: (1,0), ( -  1,0), (0, 1), O,-1) ,  (1, 1), ( - 1 , - 1 ) ,  (1 , -1) ,  
( -  1, 1). Looking at Fig. 1 it can be seen that authors considering delocalization 
along the hydrogen bonds or along the main peptide chain paid attention to cells 
(1, 0), ( -  1, 0), or cells (0, 1), (0, - 1), respectively. The interactions with the last 
four cells are, however, of equal importance and this is why systems of this type 
can be suitably treated only by two-dimensional models. 

Possessing the energy band structure we can immediately calculate two 
characteristic quantities of the charge carrier dynamics. The effective mass 
tensor is defined by 

] 
\ ~k i ~kj Jk=ko' (4) 
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where the derivative has to be taken at the corresponding band edge, i.e. at the 
bottom of the conduction band for the electron, and at the top of the valence 
band for the hole [7]. The elements of the mobility tensor have the following 
form in the constant relaxation time approximation [7]: 

e T  

# i j -  ko T (vi(k) v j (k ) ) ,  (5) 

where e denotes the charge of the electron, z is the relaxation time, k o and T are 
the Boltzmann constant and the absolute temperature, respectively. The Bloch 
velocity of the particles can be calculated from the expression 

v(k) = h-  ' Vke(k ) . (6) 

The brackets in Eq. (5) denote averaging with Boltzmann statistics over the band 
states since the organic semiconductors may be assumed to be non-degenerate. 
Equation (5) makes it possible to estimate the relative mobility of the charge 
carriers along the different directions in the crystal. To obtain the absolute value 
of the mobility we would need to know explicitely z which could be calculated 
only from the electron-phonon interaction. To turn this difficulty we will assume 
for the moment z = 10-14 s, a fairly common value in organic semiconductors, 
and by using this we can get some information from Eq. (5) about the order of 
magnitude of the mobilities in these systems. 

Results 

From the matrices C,(k) one can determine the charge distribution in the 
crystal by numerical integration over the val~es of k in the first Brillouin 
zone [5]. 

The resulting atomic valence charges are given in the last column of Table 1. 
Table 2 contains the energy band structure of fl polyglycine. The second and 

third column indicate the lower and upper limits of the energetically allowed 
zones, respectively (in parentheses we give the positions of the minima and 
maxima). In the last column the bandwidths are shown. 

In Table 3 we summarize the most important dynamical properties of the 
charge carriers. The diagonal elements of the effective mass and mobility tensors, 
and the mobility ratios are given for electrons and holes, respectively. The band 

T a b l e  1. T h e  a t o m i c  D e s c a r t e s  c o o r d i n a t e s  (in A) a n d  the  d i s t r i b u t i o n  of  the  va lence  e lec t rons  in the  
a s y m m e t r i c  un i t  of  the  p a r a l l e l - c h a i n  fl p o l y g l y c i n e  (the n u m b e r i n g  of  the  a t o m s  is the  s ame  as in Fig.  1) 

A t o m  x y z Va lence  c h a r g e  

C 1 - 0 .058 0 .000 - 0 .980 3.827 
N 2 0 .320 1.209 - 0 .260 5.594 
C 3 - 0 .572 2.048 0 .280 3.173 
0 4 - 1.799 1.918 0 .250 6.730 
H 5 0.301 0.061 - 2.007 0.985 
H 6 - 1.144 - 0 . 0 9 9  - 0 . 9 8 1  1.000 
H v 1.286 1.399 - 0 .184 0.691 
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Table  2. The  energy b a n d  s t ruc ture  of  the  para l le l -chain  fl polyglycine (energy values in eV) 

No.  of emi , (ka  . a ,  kb " b) 8max(ka. a, kb . b)  6e  

b a n d  

1 5.921 (0, 0) 5.926 (~, 0) 0.005 
2 5.707 (g, ~) 5.730 (0, g) 0.023 
3 4.998 (~, ~z) 5.093 (0, ~) 0.095 
4 4.888 (g/4, ~) 5.039 (0, ~) 0.095 
5 3.663 (~z, ~) 3.682 (~, 0) 0.019 
6 3.279 (~, 0) 3.408 (0, 0) 0.129 
7 3.129 (~/8, g) 3.293 (0, ~) 0.164 
8 3.070 (~, 0) 3.194 (0, g) 0.124 
9 2.959 (g, ~) 2.993 (3 ~/4, 0) 0.034 

10 2.748 (~/4, ~) 2.940 (0, ~) 0.192 
11 2.191 (~, ~) 2.326 (~, 0) 0.135 
12 1.671 (~/2, 0) 1.908 (0, z) 0.237 
13 1.285 (0, ~z) 1.352 (~, 0) 0.067 
14 0.950 (7 n/8, 0) 1.040 (0, ~/2) 0.090 
15 0.786 (0, n) 0.891 (~, 0) 0.105 
16 - 2.328 (0, 0) - 0.649 (0, ~) 1.679 

17" - 8 . 3 2 4  (0, n )  - -  7 . 0 9 0  (0, O) 1 . 2 3 4  

18 - 9.331 (0,0) - 9.171 (n ,n)  0.160 
19 - 10.196 (n, 0) - 9.958 (n/4, 0) 0.238 
20 - 10.276 (0, n/8) - 10.206 (n, n) 0.070 
21 - 11.413 (n, n) - 10.326 (n, re) 1.087 
22 - 11.95t (~z, 0) - 10.435 (0, ~z) 1.516 
23 - 12.139 (n/4, 0) - 11.637 (n, 7~/8) 0.502 
24 - 12.513 (~, ~/8) - 11.812 (~, ~) 0.701 
25 - 13.402 (0, ~z) - 12.458 (~, n) 0.944 
26 - 13.618 (0, ~) - 12.835 (0, 0) 0.783 
27 - 14.100 (Tr, ~z) - 13.062 (3 ~z/4, 0) 1.038 
28 - 15.478 (0, 0) - 13.322 I',~, 0) 2.156 
29 - 16.113 (~, 0) - 15.482 (0, ~) 0.631 
30 - 16.433 (~z, ~/4) - 15.756 (0, n) 0.677 
31 - 18.652 (0, re) - 16.775 (~, 7~/8) 1.877 
32 - 18.876 (0, 0) - 17.112 (~, ~z) 1.764 
33 - 25.676 (~, 3 ~/8) - 22.646 (~, 0) 3.030 
34 - 2 9 . 7 7 5  (~, 0) - 2 5 . 6 2 2  (0, z) 4.153 
35 - 34.958 (~, ~/8) - 31.623 (0, 0) 3.335 
36 - 35.486 (~c, ~) - 32.639 (0, ~) 2.847 
37 - 4 2 . 9 6 0  (0, ~) - 3 7 . 4 5 8  (~, 0) 5.502 
38 - 4 6 . 0 0 2  (0, 0) - 4 0 . 5 6 3  (n, n) 5.439 

a Highes t  filled band.  

Table  3..Effective masses  (in free e lectron mass),  mobil i t ies  (in cm  z V -  1 s -  1, a s suming  z = 10-14 s), and  
mobi l i ty  rat ios  in the  co nd uc t i on  and  valence b a n d  of the  paral le l -chain fl polyglycine  

C o n d u c t i o n  b a n d  Valence b a n d  

rnaa t .295 1.870 
mbb 0.216 0.252 
#oa 8.33 5.64 
#bb 59.24 44.77 
#b J # , ,  7.11 7.94 
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structure derivatives needed for the calculation of these quantities [Eqs. (4)-(6)] 
were computed analytically by interpolating the numerically given band 
structures with cosine polynomials. 

Discussion 

It is very extensively documented from the experimental side [8] that the 
electronic mechanism must play an essential role in the conductivity of proteins. 
Theoretically there are two possible pathways for electronic decolization in these 
systems: along the hydrogen bonds and along the polypeptide backbone, 
respectively. On the basis of early re-electron calculations it is widely accepted 
that the former mechanism is actually realized in polypeptides, though there are 
some experimental facts which seem to contradict this picture. ESR meas- 
urements have shown, for instance, that there is no evidence for an electron 
migration along the hydrogen bonds [9]. Study of the radiation effects in 
proteins on the other hand has shown that the mechanisms for the formation of 
secondary protein radicals can be understood if one assumes migration of 
electrons or holes along the backbone to the specific trapping sites [10]. 

In the present calculations we have taken into account simultaneously both 
possibilities for delocalization. From Table 3 it can be seen that the diagonal 
elements of the effective mass tensor are definitely larger both for electrons and 
holes in the direction of the hydrogen bonds (ma,) than along the polypeptide 
backbone (mbb). In accordance with this anisotropy the charge carrier mobilities 
are about 7-8 times larger along the backbone. It is evident that one should 
expect the same anisotropy of conductivity independently of the origin- of 
carriers. 

It is interesting to note that the obtained mobility values of ~ 50 cm 2 V- 1 s- 1 
(which are very probably strongly underestimated by using the value of 10-14s 
for the relaxation time) are considerably larger than 1 cm 2 V-1 s-1. This fact 
indicates [11] that in calculating the electrical properties the conventional 
methods worked out for broad band semiconductors will be applicable also in 
the case of these systems. 

For the forbidden energy gap between the highest filled and lowest unfilled 
band we obtain from Table 2 the value of AE--4.762eV. If we assume an 
intrinsic mechanism of semiconduction this gap should be related to the thermal 
activation energy of conductivity. The experimental value of A E is in 1~ alanine 
for instance 4.07 eV [12] so the discrepancy between experiment and theory is 
not too large. It can be probably further reduced if also the perturbing side-chain 
effects will be taken into account in future calculations. It is remarkable in this 
respect that a one-dimensional calculation performed with the same method for 
a single polyglycine backbone resulted AE=7.015eV [13]. This is a further 
support for the two-dimensional treatment of these systems. 

We are planning similar calculations in the near future for polypeptides of 
e-helical geometry. Since the properties of the protein molecule are determined 
both by the configuration of the backbone and by the character of the side chains, 
the effect of these latter groups will be also investigated. It would be desirable of 
course to perform an ab initio calculation for these systems without empirical 
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parameters. Because of the enormous number of intra- and intercell integrals, 
however, such a calculation would be feasible for polypeptides only by using 
some simplifications in the many-center electron-electron repulsion integrals. 
Work along these lines is in progress in our laboratory. 

Acknowledgement. The author is indebted to Professor Jfinos Ladik for initiating these in- 
vestigations and for valuable discussions about the electronic structure of biological macromolecules. 
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